19_Logistic Regression - Jupyter Notebook 10/12/22, 9:18 AM

DS 440 Data Mining

Lecture 19: Logistic Regression

In [1]: import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer

Logistic Regression model
Lets generate some synthetic data

In [2]: np.random.seed(0)

1 =30
Xs = np.random.randn(1)
ys = np.ones(1)
ys[xs < 0.4] =0
ys[xs > 0.6] =1
In [3]: plt.scatter(xslys == 1],yslys == 1],marker = 'x',s = 100)
plt.scatter(xslys == 0],yslys == 0],marker = 'x',s = 100)
plt.xlabel('x"',size = 15)
plt.ylabel('Label',size = 15)
plt.show()
10 A Yok Mk ok &
0.8 -
— 061
@
T
- 04
0.2
0.0 -
-2 1 0 1 2

http://localhost:8889/notebooks/Fall_2022/DS440/19_Logistic_Regression/19_Logistic%20Regression.ipynb Page 1 of 9

19_Logistic Regression - Jupyter Notebook 10/12/22, 9:18 AM

In [4]:

Since this is a classification problem, instead of fitting a function directly and predicting the y
values, we fit a special kind of function which can predict a discrete label y = 0/1. We fit a
logistic or a sigmoid function

_ 1
Y= Ty e
X = np.linspace(-5,5,200)
y = 1/(1 + np.exp(=1%x))
plt.plot(x,y)
plt.axvline(x = 0,color = 'k',linestyle = '-.")
plt.axhline(y = 0.5,color = 'k',linestyle = '-.")

plt.show()

Here, if the standard sigmoid above is a best fit to our data, then

1. All the x for which y > 0.5 are predicted to have a label 1,ie x > 0 =
2. All the x for which y < 0.5 are predicted to have a label 0,i.e x < 0 =
3. Hence for the standard sigmoid x = 0 is the breaking point

Make the sigmoid function parameterizable to fit to any
data

We can put any degree polynomial as a power of e.

http://localhost:8889/notebooks/Fall_2022/DS440/19_Logistic_Regression/19_Logistic%20Regression.ipynb Page 2 of 9

19_Logistic Regression - Jupyter Notebook

In [5]:

In [6]:

http://localhost:8889/notebooks/Fall_2022/DS440/19_Logistic_Regression/19_Logistic%20Regression.ipynb

10/12/22, 9:18 AM

def sigmoid(x):
poly = X
y = 1/(1 + np.exp(-1%(poly)))
return y
def custom_sigmoid(beta®,betal,x):
poly = beta@ + betalxx
y = 1/(1 + np.exp(-1x(poly)))
return y

X = np.linspace(-5,5,200)

betad = [-1,-2,0]

betal = [1,-2,2]

fig = plt.figure(figsize=(20,5))

for i in range(len(beta®)):
ax = fig.add_subplot(1,3,i+1)
plt.plot(x,custom_sigmoid(beta®@[i],betal[i],x), label = 'Customize
plt.plot(x,sigmoid(x), label = 'standard sigmoid')
plt.title(f'betad: {beta@[il}; betal: {betallil}")
plt.legend(prop = {'size':12})

plt.show()

beta0: -1; betal: 1 beta0: -2; betal: -2 beta0: 0; betal: 2

—— Customized sigmoid 10
standard sigmoid

101 —— Customized sigmoid
standard sigmoid

08 08 08

06 06 06

—— Customized sigmoid

standard sigmoid

04 04 04

02 02 02

0.0 0.0 0.0

Exercise

1. Find the beaking point of x for all 3 customized sigmoids

Page 3 of 9

19_Logistic Regression - Jupyter Notebook 10/12/22, 9:18 AM

Hence for any univariate dataset:

1. Optimize for good values of betaO and beta1 that can fit well to the given data
2. For fitting a more complex function, just increase the complexity of the polynomial in the
power of e

For a multivariate dataset

1. just use a multivariate polynomial in the power of e

Using sklearn to fit to the synthetic data
In [7]: from sklearn.linear_model import LogisticRegression

In [8]: clf = LogisticRegression(random_state=0).fit(xs.reshape(-1,1), ys)

http://localhost:8889/notebooks/Fall_2022/DS440/19_Logistic_Regression/19_Logistic%20Regression.ipynb Page 4 of 9

19_Logistic Regression - Jupyter Notebook

In [9]:

In [10]:

In [11]:

data

plt.scatter(xslys == 1],yslys == 1],marker
plt.scatter(xsl[ys == 0],ys[ys == 0],marker
plt.xlabel('x"',size = 15)
plt.ylabel('Label',size = 15)

100)
100)

"x',s

Prediction

X = np.linspace(-3,3,100)

betad = clf.intercept_I[0]

betal = clf.coef_[0]

y = custom_sigmoid(beta®,betal,x)

plt.axhline(y = 0.5,color = 'k', linestyle = '-.")
plt.plot(x,y)

plt.show()

10 1

0.8 1

0.6 1

Label

0.4+

0.2 1

0.0 1

Hence the x value for which sigmoid function goes above 0.5 is the breakpoint. Hence
breakpoint is the solution x to the following problem

1
0.5= 1+ e‘(ﬂo""ﬁlx)

Getting a different classification dataset

D =load_breast_cancer()

print(D.DESCR)

. _breast _cancer_dataset:

Breast cancer wisconsin (diagnostic) dataset

http://localhost:8889/notebooks/Fall_2022/DS440/19_Logistic_Regression/19_Logistic%20Regression.ipynb

10/12/22, 9:18 AM

Page 5 of 9

19_Logistic Regression - Jupyter Notebook

xkData Set Characteristics:kx

:Number of Instances: 569

10/12/22, 9:18 AM

:Number of Attributes: 30 numeric, predictive attributes and the

class

:Attribute Information:
radius (mean of distances from center to points on the peri

meter)

texture (standard deviation of gray-scale values)

perimeter
area

smoothness (local variation in radius lengths)

compactness (perimeter”2 / area - 1.0)

concavity (severity of concave portions of the contour)
concave points (number of concave portions of the contour)

symmetry

fractal dimension ("coastline approximation" - 1)

The mean, standard error, and "worst" or largest (mean of the

three

worst/largest values) of these features were computed for eac

h image,

resulting in 30 features.

us, field

For instance,

field @ is Mean Radi

10 is Radius SE, field 20 is Worst Radius.

class:
- WDBC-Malignant
— WDBC-Benign

:Summary Statistics:

Min Max
radius (mean): 6.981 28.11
texture (mean): 9.71 39.28
perimeter (mean): 43.79 188.5
area (mean): 143.5 2501.0
smoothness (mean): 0.053 0.163
compactness (mean): 0.019 0.345
concavity (mean): 0.0 0.427
concave points (mean): 0.0 0.201
symmetry (mean): 0.106 0.304
fractal dimension (mean): 0.05 0.097
radius (standard error): 0.112 2.873

http://localhost:8889/notebooks/Fall_2022/DS440/19_Logistic_Regression/19_Logistic%20Regression.ipynb

Page 6 of 9

19_Logistic Regression - Jupyter Notebook 10/12/22, 9:18 AM

Texture (standara error): V.30 4.885
perimeter (standard error): 0.757 21.98
area (standard error): 6.802 542.2
smoothness (standard error): 0.002 0.031
compactness (standard error): 0.002 0.135
concavity (standard error): 0.0 0.396
concave points (standard error): 0.0 0.053
symmetry (standard error): 0.008 0.079
fractal dimension (standard error): 0.001 0.03
radius (worst): 7.93 36.04
texture (worst): 12.02 49.54
perimeter (worst): 50.41 251.2
area (worst): 185.2 4254.0
smoothness (worst): 0.071 0.223
compactness (worst): 0.027 1.058
concavity (worst): 0.0 1.252
concave points (worst): 0.0 0.291
symmetry (worst): 0.156 0.664
fractal dimension (worst): 0.055 0.208

:Missing Attribute Values: None
:Class Distribution: 212 - Malignant, 357 - Benign

:Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangas
arian

:Donor: Nick Street
:Date: November, 1995

This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) dataset
S.
https://goo.gl/U2Uwz2 (https://goo.gl/U2Uwz2)

Features are computed from a digitized image of a fine needle
aspirate (FNA) of a breast mass. They describe
characteristics of the cell nuclei present in the image.

Separating plane described above was obtained using
Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree
Construction Via Linear Programming." Proceedings of the 4th
Midwest Artificial Intelligence and Cognitive Science Society,
pp. 97-101, 1992], a classification method which uses linear
programming to construct a decision tree. Relevant features
were selected using an exhaustive search in the space of 1-4
features and 1-3 separating planes.

The actual linear program used to obtain the separating plane

http://localhost:8889/notebooks/Fall_2022/DS440/19_Logistic_Regression/19_Logistic%20Regression.ipynb Page 7 of 9

https://goo.gl/U2Uwz2

19_Logistic Regression - Jupyter Notebook 10/12/22, 9:18 AM

1n the 3—dimensional space 1S That described 1n:
[K. P. Bennett and 0. L. Mangasarian: "Robust Linear

Programming Discrimination of Two Linearly Inseparable Sets",
Optimization Methods and Software 1, 1992, 23-34].

This database is also available through the UW CS ftp server:

ftp ftp.cs.wisc.edu
cd math-prog/cpo-dataset/machine-1learn/WDBC/

. topic:: References

— W.N. Street, W.H. Wolberg and 0.L. Mangasarian. Nuclear feature

extraction

for breast tumor diagnosis. IS&T/SPIE 1993 International Symposi
um on

Electronic Imaging: Science and Technology, volume 1905, pages 8
61-870,

San Jose, CA, 1993.
- 0.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer di
agnosis and
prognosis via linear programming. Operations Research, 43(4), pa
ges 570-577,
July-August 1995.
- W.H. Wolberg, W.N. Street, and 0.L. Mangasarian. Machine learnin
g techniques
to diagnose breast cancer from fine-needle aspirates. Cancer Let
ters 77 (1994)
163-171.

How to test if a model is fitted/performing well

1. Divide the data into training and testing set. Training set has the majority of samples. For
example 80%

2. If you want to compare between 2 models. Fit both models on the training set. Then
predict on the testing set.

3. The model with better performance on the testing set (unseen samples) is chosen as the
best model.

In [12]: from sklearn.model_selection import train_test_split

In [13]: X
y

D.data
D.target

http://localhost:8889/notebooks/Fall_2022/DS440/19_Logistic_Regression/19_Logistic%20Regression.ipynb Page 8 of 9

19_Logistic Regression - Jupyter Notebook 10/12/22, 9:18 AM

In [14]:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.

In [15]: clf = LogisticRegression(random_state=0).fit(X_train,y_train)

/opt/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_logi
stic.py:814: ConvergenceWarning: 1bfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as sho
wn in:
https://scikit-1learn.org/stable/modules/preprocessing.html
(https://scikit-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options
https://scikit-learn.org/stable/modules/linear_model.html#logisti
c-regression (https://scikit-learn.org/stable/modules/linear_model.ht

ml#logistic-regression)
n_iter_i = _check_optimize_result(

In [16]: c1f = LogisticRegression(random_state=0,solver = 'newton-cg',penalty =
In [17]: pred = clf.predict(X_test)

In [18]: ## Computing accuracy

In [19]: from sklearn.metrics import accuracy_score

In [20]: accuracy_score(y_test,pred)

Out[20]: ©.956140350877193

In []:

http://localhost:8889/notebooks/Fall_2022/DS440/19_Logistic_Regression/19_Logistic%20Regression.ipynb Page 9 of 9

https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression

